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Abstract

A search has been performed for pair-produced resonances decaying into three jets.
The proton-proton collision data used for this analysis were collected with the CMS
detector in 2016 at a center-of-mass energy of 13 TeV and correspond to an integrated
luminosity of 35.9 fb−1. The mass range from 200 to 2000 GeV is explored in four
separate mass regions. The observations show agreement with standard model ex-
pectations. The results are interpreted within the framework of R-parity violating
SUSY, where pair-produced gluinos decay to a six quark final state. Gluino masses
below 1500 GeV are excluded at 95% confidence level. An analysis based on data with
multijet events reconstructed at the trigger level extends the reach to masses as low
as 200 GeV. Improved analysis techniques have led to enhanced sensitivity, allowing
the most stringent limits to date to be set on gluino pair production.
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1 Introduction
Multijet final states at hadron colliders provide a unique window into many possible extensions
of the standard model (SM), albeit in the presence of large SM background processes. Many of
these models predict resonances, such as heavy colored fermions transforming as octets under
SU(3)c [1–4] or supersymmetric gluinos that undergo R-parity violating (RPV) decay into three
quarks [5–7]. All analyses of data collected at the Fermilab Tevatron by CDF [8] and at Run 1 of
the CERN LHC by CMS [9, 10] at

√
s = 7 and 8 TeV used the jet-ensemble method to suppress

the large SM background. Searches for similar signals have been performed by ATLAS [11–
13] at

√
s = 7, 8 and 13 TeV. These analyses provide limits that exclude gluinos undergoing

RPV decays, for gluino masses below 144, 650, and 917 GeV for the Tevatron, CMS, and ATLAS
results, respectively.

Presented here are the results of a dedicated search for pair-produced resonances, each de-
caying into three quarks (referred to as “three-jet resonances” hereafter) in multijet events
in proton-proton (pp) collisions. The study is based on a data sample of pp collisions at√

s = 13 TeV, corresponding to an integrated luminosity of 35.9 ± 0.9 fb−1 [14], collected in
2016 with the CMS detector [15]. Events with at least six jets, each with high transverse mo-
mentum (pT), are selected and investigated for the presence of three-jet resonances consistent
with strongly coupled particle decays. The event selection criteria are optimized using a su-
persymmetric gluino model with the assumption that the gluinos decay with a 100% branch-
ing fraction to quarks. Compared to previous analyses, this search extends its reach to lower
masses because of improvements in data acquisition. Additionally, improvements in analysis
techniques significantly enhance sensitivity over the entire mass spectrum.

2 The CMS detector
The central feature of the CMS apparatus [15] is a superconducting solenoid of 6 m internal di-
ameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scin-
tillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. For-
ward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap
detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return
yoke outside the solenoid. A particle-flow (PF) algorithm [16] aims to reconstruct and identify
each individual particle in an event, with an optimized combination of information from the
various elements of the CMS detector. The energy of photons is obtained from the ECAL mea-
surement. The energy of electrons is determined from a combination of the electron momentum
at the primary interaction vertex as determined by the tracker, the energy of the correspond-
ing ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is obtained from the curvature of the
corresponding track. The energy of charged hadrons is determined from a combination of their
momentum measured in the tracker and the matching ECAL and HCAL energy deposits, cor-
rected for zero-suppression effects and for the response function of the calorimeters to hadronic
showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected
ECAL and HCAL energy. The physics objects are the jets, clustered with the tracks assigned to
the vertex as inputs, and the associated missing transverse momentum, taken as the negative
vector sum of the pT of those jets. The reconstructed vertex with the largest value of summed
physics-object p2

T is taken to be the primary pp interaction vertex.

Jets are reconstructed from the energy deposits in the calorimeter towers, clustered using the
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anti-kT algorithm [17, 18] with a distance parameter of 0.4 (referred as AK4 jets), with the tracks
assigned to the vertex as inputs, and the associated missing transverse momentum, taken as the
negative vector sum of the pT of those jets. Jet momentum is determined as the vectorial sum
of all particle momenta in the jet, and is found from simulation to be within 5 to 10% of the true
momentum over the whole pT spectrum and detector acceptance. Additional proton-proton
interactions within the same or nearby bunch crossings can contribute additional tracks and
calorimetric energy depositions to the jet momentum. To mitigate this effect, tracks identified to
be originating from pileup vertices are discarded, and an offset correction is applied to correct
for remaining contributions. Jet energy corrections are derived from simulation to bring the
measured response of jets to that of particle level jets on average. In situ measurements of
the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to account
for any residual differences in jet energy scale in data and simulation [19]. Additional selection
criteria are applied to each jet to remove jets potentially dominated by anomalous contributions
from various subdetector components or reconstruction failures [20]. The jet energy resolution
amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV.

3 Triggers
Events of interest are selected using a two-tiered trigger system [21]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz within a time interval of less than 4 µs. The
second level, known as the high-level trigger (HLT), consists of a farm of processors running
a version of the full event reconstruction software optimized for fast processing, and reduces
the event rate to around 1 kHz before data storage. To keep the recorded data rate low, high
thresholds are used for the triggers used to study jet-based physics, such as requiring high-pT
jets and a large HT (scalar sum of AK4 jet pT values).

For the high-mass search (referred to as jets+HT), we use events collected by the OR of two
different triggers: the first requires HT ≥ 800 GeV calculated with jet pT ≥ 40 GeV; and the
second requires at least four jets with pT ≥ 70 GeV and HT ≥ 750 GeV . In order to achieve full
trigger efficiency for events passing the offline selection, the following selection is imposed:
HT ≥ 900 GeV with jet pT ≥ 50 GeV and jet multiplicity (Njets) ≥ 6. All jets are required to be
within |η| < 2.4. The high thresholds of this trigger makes it insensitive to physics at low mass
scales (∼200 GeV ).

To probe new physics at low mass scales, the selection criteria for the trigger must be relaxed.
The trigger used for the low-mass search is called the PF Scouting trigger, which has an HT
requirement of ≥ 410 GeV calculated with jet pT ≥ 20 GeV. This results in an event record rate
about 2 kHz. Owing to limitation on the available bandwidth, a minimal amount of informa-
tion is stored per event, specifically: PF objects of jets, leptons and photons as reconstructed at
the HLT. This yields an event size of 10 KB/event which, is significantly smaller than the 1 MB
event size for normal triggers. The thresholds of the PF Scouting trigger allow us to reconstruct
the fully hadronic decay of the top quark, which provides a well understood three-jet resonance
signal to validate both the PF Scouting trigger and the search strategy. In order to achieve full
trigger efficiency for events passing the offline selection, the following selection is imposed:
HT ≥ 650 GeV with jet pT ≥ 30 GeV and Njets ≥ 6. All jets are required to be reconstructed
within |η| < 2.4.
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4 Generation of simulated events
Pair-produced gluinos are used to model the signal. Gluino production is simulated using
MADGRAPH5 aMC@NLO 2.2.2 [22] and gluino decays are simulated using PYTHIA 8.212 [23],
with each gluino decaying into three jets via the λudd quark RPV coupling. The coupling is set
such that the branching fraction of the gluino to three jets is 100%. The masses of the generated
gluinos range from 200 to 2000 GeV in steps of 100 GeV. For the generation of this signal, all
superpartners except the gluino are decoupled [7] by setting the squark masses to high values.
The natural width of the gluino resonance is assumed to be much smaller than the resolution
of the detector, and no intermediate particles are produced in the gluino decay. Simulation of
the CMS detector is performed using GEANT4 [24].

All simulated samples are produced with the parton distribution functions (PDF) NNPDF3.0 [25],
with the precision (LO or NLO) set by the generator used.

5 Event selection
Events, recorded with the PF Scouting and jets+HT triggers described above, are required to
have at least one reconstructed primary vertex [26]. Since this analysis targets pair-produced
three-jet resonances, we require events to contain at least six reconstructed jets.

To identify the three jets (triplet) produced by gluino decay in these multijet events, we extend
the jet ensemble technique [8, 27] by examining the internal dynamics of multijet events. This
technique examines all possible triplets in each multijet event and applies selection criteria to
the events, pairs of triplets, and individual triplets to maximize signal sensitivity. We find that
restricting the set of considered triplets to the ones involving only the six jets of highest pT
in events with more than six jets, maximizes our sensitivity to the signal, while keeping the
background manageable. From the combinatorics of 3 jets chosen from an ensemble of 6, we
reconstruct 20 triplets per event, corresponding to two pairs of 10 triplets. For signal events,
at most two triplets come from the pair-produced gluino decay, with the remaining triplets
corresponding to incorrect jet combinations.

After the offline selection requirements mentioned above, we impose further selection criteria
in two steps. In the first, we apply a selection based on event-level variables exploiting the
kinematic features and decay topology of the event as a whole. In the second step, we impose
selection requirements on variables defined by the features of the triplets and triplet pairs.

Dalitz Variables

A very useful technique for studying three-body decays uses Dalitz plots, developed by R.H.
Dalitz to study K meson decays [28]. Dalitz plots are used to study internal resonances in
three body decays. We extend this formalism to construct Dalitz variables that contain infor-
mation about the internal dynamics of the three-body decay, in order to differentiate between
the gluino decays and QCD multijet backgrounds. To construct the Dalitz variables, we form
the invariant masses of three dijet pairs inside the triplet, with masses m12, m23, m13. Dalitz
variables for a triplet are formed by normalizing these dijet invariant masses. They are defined
as follows

m̂(3, 2)2
ij =

m2
ij

m2
ijk + m2

i + m2
j + m2

k
. (1)

Here, mi are the mass of the individual jets and mijk is the mass of the triplet. Indicies here refer
to jets in the triplet, where i, j, k ∈ {1, 2, 3}. There are three m̂(3, 2)2

ij in a triplet; we express
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Figure 1: Pair masses within the triplet as described in Eq. (1) plotting superimposed m̂(3, 2)2
high

vs. m̂(3, 2)2
low, m̂(3, 2)2

high vs. m̂(3, 2)2
mid and m̂(3, 2)2

mid vs. m̂(3, 2)2
low. QCD multijet triplets

(left) cluster at the edge, while triplets from signal events (mg̃ = 800 GeV, right) fill the center.

this with the label “(3,2)” where the “3” refers to the overall object being a triplet and the “2”
refers to pairs inside this triplet. The invariant mass of the dijet pairs is normalized such that
their Dalitz variables sum up to unity and are dimensionless. For signal triplets, the lack of
an internal resonance and the evenly spread out jets make the Dalitz variables close to the
value 1/3, implying a symmetric decay where the jets have uniform geometric separation in
the center-of-mass frame of the gluino. Triplets made of jets arising from QCD multijets are
more asymmetric, resulting in their m̂(3, 2)2

ij being closer to 0 or 1. This is illustrated in Fig. 1.
The three m̂(3, 2)2

ij values per triplet are sorted from largest to smallest, and labeled m̂(3, 2)2
high,

m̂(3, 2)2
mid, and m̂(3, 2)2

low. We plot the three pairs of these m̂(3, 2)2s per event: m̂(3, 2)2
high vs

m̂(3, 2)2
mid, m̂(3, 2)2

high vs m̂(3, 2)2
low, and m̂(3, 2)2

mid vs m̂(3, 2)2
low. These three pairs occupy

mutually exclusive regions in the m̂(3, 2)2 vs m̂(3, 2)2 plane, which combine to give a single
overall distribution. This plot is referred to as a dimensionless Dalitz plot. When the variables
are displayed in a Dalitz plot, the signal peaks in the center closer to the value 1/3 while the
QCD multijet background clusters around the edges.

Using this feature, we define a distance measure mass distance squared (or D2) to measure the
symmetry between the jets inside a triplet. This distance measure, which is plotted in Fig. 2 is
defined as

D2
[3,2] = ∑

i>j

(
m̂ij −

1√
3

)2

. (2)

We extend this idea to the event-level to define a second variable, to estimate the angular spread
of the 6 jets within a pairs of triplets. This distance measure will have a low value for signal-like
topologies, indicating well separated jets with similar momentum and a high value for dijet-
like topologies such as QCD. For this purpose, new Dalitz variables are defined as normalized
invariant mass of jet triplets constructed from the six highest pT jets

m̂(6, 3)2
ijk =

m2
ijk

4 m2
ijklmn + 6 ∑i m2

i
. (3)

Here, mijklmn is the invariant mass of the top six jets, ordered in pT. Indicies here refer to the the
top six jets ordered in pT, where i, j, k, l, m, n ∈ {1, 2, ..., 6}. The label “(6,3)”, the first index refers
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Figure 2: right: The D2
[3,2] variable as described in Eq. (2) for signal (gluino of mass 400 GeV)

and QCD multijet triplets. left: The D2
[(6,3)+(3,2)] distribution as described in Eq. (4), for signal

(gluino of mass 400 GeV) and QCD multijet triplets. The distributions are made after nominal
selection criteria.

to the overall object being a six-jet ensemble, and the second refers to triplets inside this six-jet
ensemble. For a six-jet topology, we will have 20 such m̂(6, 3)2

ijk variables. Six-jet events from
QCD multijets are largely due to a core dijet event with extra radiated jets. These jets tend to be
grouped together. Jets from pair-produced gluino decays tend to be distributed more uniformly
across the detector. This makes these variables close to 0 or 1 for QCD multijets and close to
1/20 for jets coming from signal decay. The invariant mass of the triplet is normalized such
that these 20 event-level Dalitz variables sum up to 1. Using the previously defined variables,
we define the following six-jet distance measure in a similar way to D2

[3,2],

D2
[(6,3)+(3,2)] = ∑

i<j<k

(√
m̂(6, 3)2

ijk + D2
[3,2],ijk −

1√
20

)2

. (4)

This D2
[(6,3)+(3,2)] combines the D2

[6,3] and D2
[3,2] into a single event-level variable. Figure 2 shows

the D2
[(6,3)+(3,2)] and D2

[3,2] distributions for QCD multijet background and gluino simulation
after the selection criteria: HT ≥ 650 GeV, sixth jet pT ≥ 50 GeV and Njets ≥ 6. The slight
discrepancy between QCD multijet simulation and data in the Fig. 2 has a negligible effect on
this search.

Other pair and triplet level selections

For each triplet pair we calculate a variable called “mass asymmetry”, defined as

Am =
|mijk −mlmn|
mijk + mlmn

. (5)

Here, mijk and mlmn are masses of the two unique triplets in a triplet pair. This variable shows
discriminating power between signal and background.

For triplets from multijet QCD events or combinatorial background, the scalar sum pT (|pT|ijk)
will scale with the triplet mass (mijk). Where as it is not case for signal triplets as they have
constant invariant mass. We exploit this feature of signal triplets by constructing a selection,
referred to as a“Delta cut”, defined as:

mijk < |pT|ijk − ∆, (6)
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Figure 3: The triplet invariant mass versus the triplet scalar pT for a gluino of mass 400 GeV
decaying to jets. The filled color represents correctly reconstructed signal triplets, while the
contour lines and gray scatter points represent wrongly combined triplets. The red dashed line
illustrates the ∆ cut; triplets to the right of the line pass the selection criterion.

where mijk is the triplet invariant mass, |pT|ijk is the scalar sum of jet pT in the triplet (triplet
scalar pT), and ∆ is an adjustable offset. A scatter plot of the triplet invariant mass versus
triplet scalar pT for a gluino with a mass of 400 GeV is shown in Fig. 3, which clearly shows
that by imposing this selection criterion we eliminate most of the background while retaining
a significant fraction of the signal.

We optimize selection criteria in four separate mass ranges with a metric defined as the ratio of
signal to the square root of the background obtained by integrating the triplet mass distribution
from gluino and QCD multijet simulations in a window around the signal peak. We note that
background can include triplets from QCD multijet as well as combinatorial background from
signal. The four resulting signal regions are defined in Table 1 and labeled from 1 to 4.

Table 1: Gluino mass ranges used in this analysis, and selection criteria used. Note that the
Gluino mass ranges upper two rows in the table use events collected using the PF Scouting
trigger, while the lower two rows in the table use events collected using jets+HT trigger. The
symbol ‘>’ and ‘<’ represent the direction of the cut.

Region
Gluino

mass range Jet pT HT sixth jet pT D2
[(6,3)+(3,2)] Am ∆ D2

[3,2]

1 200–400 GeV >30 GeV >650 GeV >40 GeV <1.25 <0.25 >250 GeV <0.05
2 400–700 GeV >30 GeV >650 GeV >50 GeV <1.00 <0.175 >180 GeV <0.175
3 700–1200 GeV >50 GeV >900 GeV >125 GeV <0.9 <0.15 >20 GeV <0.2
4 1200–2000 GeV >50 GeV >900 GeV >175 GeV <0.75 <0.15 >-120 GeV <0.25

6 Background estimation
There are three sources of background that we consider: QCD multijets, fully hadronic decays
of tt pairs, and combinatorial background from signal events. We find that background due to
the tt decays is only significant in the lowest mass region of the search. This background is esti-
mated from events simulated with POWHEG [29–32] and their decay is simulated with PYTHIA.
The tt production rate extracted from a background-only fit in Region 1 agrees with the SM
expectation within the statistical uncertainty of the measurement. The mass distributions of
the QCD multijet and combinatorial backgrounds are estimated by fitting a smooth function
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to data. Studies of simulated QCD multijet events and combinatorial background from signal
events show that the combined mass distribution can be described by a single smooth func-
tion. Except for the lowest mass region, the triplet invariant mass background distribution is
smoothly falling (as we can see in Fig. 4 ), and we use three types of functions, fit directly to
the data, to model this background in different regions.

The background distribution of triplets in Region 1 shows features due to the turn-on of QCD
multijet background and tt decays. For modeling this QCD multijet and combinatorial back-
ground, we use a function inspired by the formulation of Planck’s law of blackbody radia-
tion with an added logarithmic correction to the tails, and this distribution models the back-
ground well. This function models the QCD multijet background turn-on better than the four-
parameter function, used to fit triplet mass distributions in other regions:

dN
dx

=
1

(x + c)5+d ln x√
s

a

e
b

x+c − 1
, (7)

where, a is the factor controlling the normalization of the fit, b is the “temperature” term
in blackbody distribution, c controls the translation of the whole distribution, d controls the
strength of the logarithmic term, and

√
s is the center-of-mass energy of the proton-proton

collisions.

For modeling the background in Regions 2 and 3, we use the following four-parameter function

dN
dx

= p0

(
1− x√

s

)p1

(
x√
s

)p2+p3 ln x√
s
, (8)

and for Region 4 we used the same parametrization, with p3 set to zero, to model the back-
ground.

The functional form in Eq. (8) successfully models the steeply falling dijet mass distribution of
QCD multijet production and has been used extensively in dijet resonance searches [33, 34].

We test for possible bias introduced by the choice of background parameterization. We per-
form signal injection tests on pseudo-experiments generated from QCD multijet simulation.
These pseudo-experiments are fit to alternative background parameterizations and the effect
on the strength of the extracted signal is examined. These tests indicate a negligible bias. We
also perform statistical studies (F-tests) to determine the optimum number of parameters for
the background function, to avoid over constraint. The distributions of triplet mass in the four
search regions are shown in Fig. 4 , along with the results of fits to the background-only hy-
pothesis. The mass distributions expected for a typical gluino decay is shown in purple, with
the rate normalized to that expected from [35]. The fits reproduce the data distributions well,
indicating absence of a signal.

For the signal triplet-mass distribution, signal simulations parameterized with double Gaus-
sian distributions are used. These parameterizations accurately describe the shape of signal
triplet mass distribution. The acceptances for the search is defined as the number of correct
triplets passing the selection, divided by the number of events generated. The selection crite-
ria given in Table 1 result in signal acceptance of 2.6× 10−4, 8.4× 10−2 and 1.7× 10−1 for the
resonance masses mg̃ = 200, 900, and 1600 GeV respectively.
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7 Systematic uncertainties
The search in Regions 1 and 2 uses PF Scouting data. Jets in these events did not have the full of-
fline set of corrections applied. We use the well-measured all-hadronic decay of the top quark
to determine the corrections and corresponding systematic uncertainties for the PF Scouting
data. The triplet-mass distribution from tt simulation must be adjusted in order to agree with
the data in Region 1, with two transformations to the simulated triplet mass distribution re-
quired. The first is a translation of 6.6 GeV, referred to as the “shift” correction. The second is
a convolution with a Gaussian distribution of width of 8.9 GeV, referred to as the “smear” cor-
rection. The shift and smear values determined from the top resonance measurement are also
applied to the gluino simulation. We performed a separate study to investigate the dependence
of the shift and smear on the triplet scalar pT and found negligible correlation. Corresponding
systematic uncertainties for the shift and smear corrections are estimated to be 3.5 and 4%, re-
spectively. These corrections are defined as a percentage of the mean of the signal distribution.
For the jets+HT data, adjustments analogous to shift and smear are applied to correct for the
effects arising from uncertainties in the measurement of jet energy corrections (2.5%) and jet
energy resolution (12%). These systematic uncertainties affect the shape of the signal triplet
mass distributions.

The other systematic uncertainties affecting the yield from the signal samples are the integrated
luminosity measurement (2.5%) and the uncertainty in the determination of acceptance (5%),
which includes contributions from uncertainties in the PDF. We list the systematic uncertainties
for both datasets in Table 2.

Table 2: Summary of the systematic uncertainties in the signal yield. For the uncertainty af-
fecting the distribution (shape), the value represents the percentage difference in the nominal
value of the systematic uncertainty. These systematic uncertainties are applied to the signal.

Data set Source of systematic Effect Value

All
Luminosity Yield 2.5%
Acceptance Yield 5%

PF Scouting
Shift Shape 3.5%
Smear Shape 4%

jets+HT
Jet energy correction Shape 2.5%
Jet energy resolution Shape 12%

8 Limits
The mass distribution of data is described well by the background parameterization, as illus-
trated in Fig. 4 . We see no significant excess that could indicate the presence of signal, and place
upper limits on the product of the cross section and branching fraction for the pair production
of three-jet resonances. A modified frequentist approach, with the CLs criterion as the figure of
merit and a profile likelihood as the test statistic, is employed. Limits are calculated with the
frequentist asymptotic approximation in RooStats [36–39]. The full CLs calculator gives similar
results. The data are fit using a binned maximum-likelihood function, based on the respective
four-parameter function. In Region 1, the rate for tt events is set to the value observed from the
background-only fit and is allowed to float within the systematic uncertainty. The overall QCD
scale is unconstrained and the nuisance parameters effecting the overall rate are introduced as
log-normal constrains.
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Figure 5: Observed and expected frequentist CLs limits on cross section times branching frac-
tion are calculated in the asymptotic approximation. The solid red curve shows the prediction
for the gluino pair productions from [35]. The band around the theory curve indicates the un-
certainty associated with PDF and scale choices. The gray vertical lines indicate the boundaries
between the mass regions.

The observed and expected 95% confidence level (CL) upper limits on the product of gluino
pair-production cross section and branching fraction, as a function of gluino mass, are pre-
sented in Fig. 5. The solid red line in the figure show the next-to-leading order (NLO) plus
next-to-leading-logarithm (NLL) cross sections for gluino pair production [35], and the shaded
region around the solid red line represent the corresponding 1 standard deviation uncertain-
ties, which range from 14 to 31%. We use the points where the 1 sigma uncertainty curve for
the NLO+NLL cross section crosses the observed limit curve to obtain our final results.

The production of gluinos decaying by an R-parity violating interaction into jets is excluded at
95% CL for gluino masses below 1500 GeV. This is the most stringent mass limit to date on this
model of RPV gluino decay, assuming a 100% branching fraction for gluinos decaying to quark
jets.

9 Summary
A search has been performed for pair-produced resonances decaying into three jets. The proton-
proton collision data used for this analysis were collected with the CMS detector in 2016 at a
center-of-mass energy of

√
s = 13 TeV and correspond to an integrated luminosity of 35.9 fb−1.

The mass range from 200 to 2000 GeV is explored in four separate mass regions. The observa-
tions show agreement with standard model expectations. The results are interpreted within the
framework of R-parity violating SUSY, where pair-produced gluinos decay to a six quark final
state. Gluino masses below 1500 GeV are excluded at 95% confidence level. An analysis based
on data with multijet events reconstructed at the trigger level extends the reach to masses as
low as 200 GeV. Improved analysis techniques have led to enhanced sensitivity, allowing the
most stringent limits to date to be set on gluino pair production.
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IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud,
P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander,
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G. Vesztergombi†



19

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati23, C. Kar, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo23, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur,
M. Kaur, S. Kaur, P. Kumari, M. Lohan, A. Mehta, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi,
G. Walia

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra,
M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj25, M. Bharti25, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep25, D. Bhowmik,
S. Dey, S. Dutt25, S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy,
S. Roy Chowdhury, G. Saha, S. Sarkar, M. Sharan, B. Singh25, S. Thakur25

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, RavindraKumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar,
M. Maity26, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar26

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi,
S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani27, E. Eskandari Tadavani, S.M. Etesami27, M. Khakzad, M. Mohammadi Na-
jafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh28, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
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A. Braghieria, A. Magnania, P. Montagnaa ,b, S.P. Rattia,b, V. Rea, M. Ressegottia ,b, C. Riccardia ,b,
P. Salvinia, I. Vaia,b, P. Vituloa ,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
31: Also at Kyunghee University, Seoul, Korea
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnologı́a, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’
(MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at California Institute of Technology, Pasadena, USA
42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
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